
Acta Mathematica Sinica, English Series

Jan., 2017, Vol. 33, No. 1, pp. 61–70

Published online: September 30, 2016

DOI: 10.1007/s10114-016-4738-6

Http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag Berlin Heidelberg & 
      The Editorial Office of  AMS  2017

Hopf Hypersurfaces in Complex Two-Plane Grassmannians

with Generalized Tanaka–Webster D-Parallel Shape Operator

Hyunjin LEE
Research Institute of Real & Complex Manifolds, Kyungpook National University,

Daegu 41566, Republic of Korea

E-mail : lhjibis@hanmail.net

Eunmi PAK Young Jin SUH
Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea

E-mail : empak@hanmail.net yjsuh@knu.ac.kr

Abstract In this paper, we consider a new notion of generalized Tanaka–Webster D-parallel shape

operator for a real hypersurface in a complex two-plane Grassmannian and prove a non-existence

theorem of a real hypersurface.

Keywords Complex two-plane Grassmannians, real hypersurfaces, generalized Tanaka–Webster con-

nection, parallel shape operator, D-parallel shape operator

MR(2010) Subject Classification 53C40, 53C15

1 Introduction

In the geometry of real hypersurfaces in Hermitian symmetric spaces, many differential geome-
ters have studied the characterization under special condition [4, 11]. Moreover, in complex
space forms or in quaternionic space forms, they have considered new notions weaker than
having parallel second fundamental form, that is, ∇A = 0 (see [7, 12]).

Now as an ambient space, we introduce a complex two-plane Grassmannian G2(Cm+2) of
all complex two-dimensional linear subspaces in Cm+2. Another aspect of complex Grassmann
manifolds G2(Cm+2) is that they are homogeneous spaces of unitary groups and represent
irreducible Hermitian symmetric spaces of rank 2. Especially this Riemannian symmetric space
is the unique compact Riemannian manifold being equipped with both a Kähler structure J

and a quaternionic Kähler structure J not containing J . The almost contact structure vector
field ξ defined by ξ = −JN is said to be a Reeb vector field, where N denotes a local unit
normal vector field of a real hypersurface M in G2(Cm+2).

The almost contact 3-structure vector fields ξν for the 3-dimensional distribution D⊥ of M

in G2(Cm+2) are defined by ξν = −JνN (ν = 1, 2, 3), where Jν denotes a canonical local basis of
a quaternionic Kähler structure J, such that TxM = D⊕D⊥, x ∈ M . Then, naturally we could
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consider two geometric conditions for hypersurfaces M in G2(Cm+2) that the 1-dimensional
distribution [ξ] = Span{ξ} and the 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are both
invariant under the shape operator A of M (see [2]). Furthermore, the Reeb vector field ξ is
said to be Hopf if it is invariant under the shape operator A. The one-dimensional foliation of
M by the integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M . We
say that M is Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation of M is totally
geodesic. Using the formulas in Section 2, it can be easily checked that M is Hopf if and only
if the Reeb vector field ξ is Hopf.

By using two invariant conditions mentioned above and the result in Alekseevskii [1], Berndt
and Suh [2] proved the following:

Theorem 1.1 Let M be a connected orientable real hypersurface in G2(Cm+2), m ≥ 3. Then
both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn

in G2(Cm+2).

Using Theorem 1.1, Lee and Suh [10] gave a characterization of real hypersurfaces of
Type (B) in G2(Cm+2) in terms of the Reeb vector field ξ as follows:

Theorem 1.2 Let M be a connected orientable Hopf hypersurface in a complex two-plane
Grassmannian G2(Cm+2), m ≥ 3. Then the Reeb vector field ξ belongs to the distribution
D if and only if M is locally congruent to an open part of a tube around a totally geodesic
HPn in G2(Cm+2), m = 2n, where the distribution D denotes an orthogonal complement of
D⊥ = Span{ξ1, ξ2, ξ3}.

Now, instead of the Levi–Civita connection, let us consider another connection, namely,
the generalized Tanaka–Webster connection (in short, the g-Tanaka–Webster connection) ∇̂(k)

for a non-zero real number k [5, 8]. This new connection ∇̂(k) is defined by the naturally
extended one of Tanno’s generalized Tanaka–Webster connection ∇̂ for contact metric mani-
folds. Actually, Tanno [14] introduced the notion of generalized Tanaka–Webster connection ∇̂
defined on contact Riemannian manifolds from the canonical connection which coincides with
the Tanaka–Webster connection if the associated CR-structure is integrable.

Using such a g-Tanaka–Webster connection ∇̂(k), many geometers have studied some char-
acterizations of real hypersurfaces in a complex two-plane Grassmannian G2(Cm+2). Recently,
Jeong et al. [5] considered g-Tanaka–Webster parallel shape operator, that is, (∇̂(k)

X A)Y = 0 for
any tangent vector fields X, Y on M and gave a non-existence theorem for Hopf hypersurfaces
in G2(Cm+2). Moreover, in [6] the authors gave a new characterization of real hypersurfaces
of Type (B) in G2(Cm+2) with another parallel notion of shape operator concerned with g-
Tanaka–Webster connection, that is, (∇̂(k)

X A)Y = 0 for any vector fields X ∈ D⊥ and Y ∈ TM .

Motivated by these results, in this paper we consider another new notion of g-Tanaka–
Webster parallelism for the shape operator on real hypersurfaces M in G2(Cm+2). If the shape
operator A of M satisfies (∇̂(k)

X A)Y = 0 for any vector fields X ∈ D and Y ∈ TM , then the
shape operator is said to be D-parallel in the generalized Tanaka–Webster connection. Naturally,
we know that such kind of notion is different from the g-Tanaka–Webster D⊥-parallel in [6] and



G-Tanaka–Webster D-Parallel Shape Operator 63

weaker than the g-Tanaka–Webster parallel in [5]. Then related to the notion of D-parallelism,
we assert the following:

Theorem 1.3 There does not exist any Hopf hypersurface in a complex two-plane Grass-
mannian G2(Cm+2), m ≥ 3, with D-parallel shape operator in the generalized Tanaka–Webster
connection.

2 Preliminaries

Basic materials about complex two-plane Grassmannians are well known to us (see [2, 3]). This
complex two-plane Grassmannian G2(Cm+2) becomes a Riemannian homogeneous space, even
a Riemannian symmetric space. Using Lie algebra, we normalize g such that the maximal
sectional curvature of (G2(Cm+2), g) is eight.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian structures
Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is taken modulo three. Since
J is parallel with respect to the Riemannian connection ∇̃ of (G2(Cm+2), g), there exist for any
canonical local basis {J1, J2, J3} of J three local one-forms q1, q2, q3 such that

∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (2.1)

for all vector fields X on G2(Cm+2).
Furthermore, the Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY, Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ}

+
3∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX, Z)JνJY }, (2.2)

where {J1, J2, J3} denotes a canonical local basis of J.
Now, let M be a real hypersurface in G2(Cm+2), that is, a hypersurface of G2(Cm+2) with

real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇
denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M

and A the shape operator of M with respect to N . Let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (2.3)

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N denotes a unit
normal vector field of M in G2(Cm+2). From the Kähler structure J of G2(Cm+2), there exists
an almost contact metric structure (φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (2.4)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis of J.
Then the quaternionic Kähler structure Jν of G2(Cm+2), together with the condition JνJν+1 =
Jν+2 = −Jν+1Jν , induces an almost contact metric 3-structure (φν , ξν , ην , g) on M as follows:

φ2
νX = −X + ην(X)ξν , ην(ξν) = 1, φνξν = 0, φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν , φν+1φνX = −φν+2X + ην(X)ξν+1

(2.5)
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for any vector field X tangent to M . Moreover, from the commuting property of JνJ = JJν ,
ν = 1, 2, 3, the relation between these two contact metric structures (φ, ξ, η, g) and (φν , ξν , ην , g),
ν = 1, 2, 3, can be given by

φφνX = φνφX + ην(X)ξ − η(X)ξν , ην(φX) = η(φνX), φξν = φνξ. (2.6)

On the other hand, from the parallelism of Kähler structure J , that is, ∇̃J = 0 and of
quaternionic Kähler structure J (see (2.1)), together with Gauss and Weingarten formulas it
follows that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX, (2.7)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (2.8)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (2.9)

Using the above expression for the curvature tensor R̃ of G2(Cm+2), the equation of Codazzi
is given by

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

+
3∑

ν=1

{ην(φX)φνφY − ην(φY )φνφX}

+
3∑

ν=1

{η(X)ην(φY ) − η(Y )ην(φX)}ξν . (2.10)

Now, let us introduce the notion of g-Tanaka–Webster connection ∇̂(k) on real hypersurfaces
in Kähler manifolds (see [5, 6, 8]).

As stated in the introduction, the Tanaka–Webster connection is the canonical affine con-
nection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [13, 15]). For contact
metric manifolds, their associated CR-structures are pseudo-Hermitian and strongly pseudo-
convex, but they are not in general integrable. In this situation, Tanno [14] defined a new
connection ∇̂ given by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY (2.11)

for contact metric manifolds as a generalization of the original Tanaka–Webster connection.
From such a point of view, we called this new connection ∇̂ the g-Tanaka–Webster one. From
this, we know that the g-Tanaka–Webster connection ∇̂ coincides with the Tanaka–Webster
connection if the associated CR-structure is integrable. Moreover, since a real hypersurface
M of Kähler manifolds satisfies Aφ + φA = 2φ if and only if M is contact metric, we have
another g-Tanaka–Webster connection ∇̂(k) for M as an extension of the Tanno’s connection
∇̂. Actually, by substituting (2.7) into (2.11), the generalized Tanaka–Webster connection ∇̂(k)

for M is defined by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (2.12)

for a non-zero real number k (see [5, 6, 8]). (Note that ∇̂(k) is invariant under the choice of the
orientation. Namely, we may take −k instead of k in (2.12) for the opposite orientation −N .)
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3 Key Lemmas

Let us assume that M is a Hopf hypersurface in a complex two-plane Grassmann manifold
G2(Cm+2) with generalized Tanaka–Webster D-parallel shape operator, that is, the shape op-
erator A satisfies

(∇̂(k)
X A)Y = 0 (∗)

for any vector fields X ∈ D and Y ∈ TM .
First of all, we give the fundamental equation induced from the definition of the generalized

Tanaka–Webster connection (2.12) as follows:

(∇̂(k)
X A)Y = ∇̂(k)

X (AY ) − A(∇̂(k)
X Y )

= (∇XA)Y + g(φAX, AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY (3.1)

for any tangent vector fields X and Y on M .
Since M is a Hopf hypersurface in G2(Cm+2), by the condition (∗) the equation (3.1) is

rewritten in the form

(∇XA)Y + g(φAX, AY )ξ − αη(Y )φAX − kη(X)φAY

− αg(φAX, Y )ξ + η(Y )AφAX + kη(X)AφY = 0 (3.2)

for any vector fields X ∈ D and Y ∈ TM .
Replacing Y by ξ in (3.2), we have

(∇XA)ξ − αφAX + AφAX = 0. (3.3)

Moreover, since (∇XA)ξ = (Xα)ξ + αφAX − AφAX, the equation (3.3) can be written as

(Xα)ξ = 0

for any vector field X ∈ D.
By taking the inner product with ξ in above equation, we have Xα = 0 for any vector field

X ∈ D. From this, we obtain the following result:

Lemma 3.1 Let M be a Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2),
m ≥ 3, with D-parallel shape operator in the generalized Tanaka–Webster connection. Then the
principal curvature α = g(Aξ, ξ) is constant along the direction D, that is, Xα = 0 for any
vector field X ∈ D.

Here, it is a main goal to show that the Reeb vector field ξ belongs to either the distribution
D or its orthogonal complement of D⊥ such that TM = D⊕D⊥ in G2(Cm+2) when the shape
operator A of M is D-parallel in the generalized Tanaka–Webster connection.

From now on, unless otherwise stated in the present section, we may put the Reeb vector
field ξ as follows:

ξ = η(X0)X0 + η(ξ1)ξ1 (∗∗)
for some unit vector fields X0 ∈ D and ξ1 ∈ D⊥.

On the other hand, using the notion of geodesic Reeb flow, Berndt and Suh [2, 3] proved
the following:
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Lemma 3.2 If M is a connected orientable real hypersurface in G2(Cm+2) with geodesic Reeb
flow, then we have the following two equations :

Y α = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY ), (3.4)

and

αAφY + αφAY − 2AφAY + 2φY

= 2
3∑

ν=1

{−ην(Y )φξν − ην(φY )ξν − ην(ξ)φνY + 2η(Y )ην(ξ)φξν + 2ην(φY )ην(ξ)ξ} (3.5)

for any tangent vector field Y on M .

Now, using these facts, we prove the following:

Lemma 3.3 Let M be a Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2),
m ≥ 3, with D-parallel shape operator in the generalized Tanaka–Webster connection. Then the
Reeb vector field ξ belongs either to the distribution D or the distribution D⊥.

Proof Actually, when the smooth function α = g(Aξ, ξ) vanishes identically, this lemma
can be verified directly from (3.4). Thus, we consider only the case that the function α is
non-vanishing. By using Lemma 3.1 and putting Y ∈ D in (3.4), it becomes

(ξα)η(Y ) − 4η1(ξ)η1(φY ) = 0.

Since φξ1 = η(X0)φ1X0, it follows

η(X0)(ξα)g(X0, Y ) + 4η(X0)η1(ξ)g(Y, φ1X0) = 0 (3.6)

for Y ∈ D.
First, we assume that ξα �= 0. Substituting Y by X0, the equation (3.6) yields η(X0)(ξα) =

0. By using our assumption ξα �= 0, we obtain η(X0) = 0. From this and (∗∗), we have
ξ = η(ξ1)ξ1 and thus we assert that the Reeb vector field ξ belongs to the distribution D⊥ for
this case.

Next, we suppose that ξα = 0. Since X0 ∈ D, the vector field φ1X0 also belongs to the
distribution D, that is, φ1X0 ∈ D. Thus substituting Y by φ1X0 in (3.6), we get η(X0)η1(ξ) = 0,
that is, η(X0) = 0 or η1(ξ) = 0. It means that ξ belongs either to the distribution D or the
distribution D⊥.

Accordingly, summing up these cases the proof of our Lemma 3.3 is completed.

4 Proof of Theorem 1.3

Let M be a Hopf hypersurface in G2(Cm+2) with D-parallel shape operator in the generalized
Tanaka–Webster connection, that is, the shape operator A satisfies the following condition:

(∇̂(k)
X A)Y = 0 (∗)

for any vector fields X ∈ D and Y ∈ TM . Then by Lemma 3.3, we are able to consider the
following two cases that the Reeb vector field ξ either belongs to the distribution D⊥ or to the
distribution D.

First of all, we consider the case ξ ∈ D⊥. Without loss of generality, we may put ξ = ξ1.
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Lemma 4.1 If the Reeb vector field ξ belongs to the distribution D⊥, then there does not
exist any Hopf hypersurface M in a complex two-plane Grassmannian G2(Cm+2), m ≥ 3, with
D-parallel shape operator in the generalized Tanaka–Webster connection.

Proof By using (3.2), we have

(∇XA)Y + g(φAX, AY )ξ − αg(φAX, Y )ξ = 0 (4.1)

for any tangent vector fields X, Y ∈ D.
Interchanging X with Y in above equation, we get

(∇Y A)X + g(φAY, AX)ξ − αg(φAY, X)ξ = 0 (4.2)

for any vector fields X, Y ∈ D.
By means of the equation of Codazzi (2.10) and (3.5), subtracting (4.2) from (4.1), we

obtain

0 = (∇XA)Y − (∇Y A)X + 2g(AφAX, Y )ξ − αg(φAX, Y )ξ + αg(φAY, X)ξ

= −2g(φX, Y )ξ − 2g(φ1X, Y )ξ1 − 2g(φ2X, Y )ξ2 − 2g(φ3X, Y )ξ3 + αg(AφX, Y )ξ

+ αg(φAX, Y )ξ + 2g(φX, Y )ξ + 2g(φ1X, Y )ξ − αg(φAX, Y )ξ + αg(φAY, X)ξ

for any vector fields X, Y ∈ D.
Taking the inner product with ξ2, the equation (4.3) reduces to

g(φ2X, Y ) = 0 (4.3)

for any vector fields X, Y ∈ D.
Let {e1, e2, . . . , e4m−4, e4m−3, e4m−2, e4m−1} be an orthonormal basis for a tangent vector

space TxM at any point x ∈ M . Without loss of generality, we may put e4m−3 = ξ1, e4m−2 = ξ2

and e4m−1 = ξ3. For this orthonormal basis {ei | i = 1, 2, . . . , 4m − 1} the tangent vector φ2X

where X ∈ D is given by

φ2X =
4m−1∑

ν=1

g(φ2X, ei)ei

=
4m−4∑

ν=1

g(φ2X, ei)ei +
3∑

ν=1

g(φ2X, ξν)ξν .

Besides, since g(φ2X, ξν) = 0 for any ν = 1, 2, 3, we see that φ2X ∈ D for X ∈ D. Therefore,
from (4.3) it implies that

φ2X = 0

for X ∈ D. Applying φ2 to both sides, we get X = η2(X)ξ2 for any tangent vector field X ∈ D.
Consequently it follows that any tangent vector X belonging to the distribution D becomes
zero, that is, it means that dimM = 3. But since the dimension of M is 4m − 1 (m ≥ 3), it
makes a contradiction. So, we can assert our Lemma 4.1.

Next we consider the case ξ ∈ D. By virtue of Theorem 1.2 due to Lee and Suh [10], we
give the following:
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Lemma 4.2 Let M be a Hopf hypersurface in G2(Cm+2) with D-parallel shape operator in the
generalized Tanaka–Webster connection. If the Reeb vector field ξ belongs to the distribution
D, then M is locally congruent to an open part of a tube around a totally geodesic HPn in
G2(Cm+2), m = 2n.

From the above two Lemmas 4.1, 4.2 and the classification theorem given by Theorem 1.1
in this paper, we see that M is locally congruent to a model space of Type (B) in Theorem 1.1
under the assumption of our Theorem 1.3 given in Introduction.

Hence it remains to check if the shape operator A of real hypersurfaces of Type (B) satisfies
the condition (∗) for any vector fields X ∈ D and Y ∈ TM . In order to do so, we introduce
a proposition related to eigenspaces of the model space of Type (B) with respect to the shape
operator. As the following proposition (see [2]) is well known, a real hypersurface M of Type (B)
has five distinct constant principal curvatures as follows:

Proposition 4.3 Let M be a connected real hypersurface in G2(Cm+2). Suppose that AD ⊂
D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension m of G2(Cm+2) is even,
say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), μ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n − 4 = m(μ)

and the corresponding eigenspaces are

Tα = Rξ = Span
{
ξ
}
,

Tβ = JJξ = Span
{
ξν | ν = 1, 2, 3

}
,

Tγ = Jξ = Span
{
φνξ | ν = 1, 2, 3

}
,

Tλ, Tμ,

where

Tλ ⊕ Tμ = (HCξ)⊥, JTλ = Tλ, JTμ = Tμ, JTλ = Tμ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ, where

HCξ = Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

To check this problem, we suppose that M has D-parallel shape operator with respect to
the g-Tanaka–Webster connection. Putting X = ξ ∈ D , Y = ξ2 ∈ Tβ in (3.2) and using (2.5),
it becomes

0 = (∇ξA)ξ2 + g(φAξ, Aξ2)ξ − αη(ξ2)φAξ − kη(ξ)φAξ2

− αg(φAξ, ξ2)ξ + η(ξ2)AφAξ + kη(ξ)Aφξ2

= αβφ2ξ − kβφ2ξ + kγφ2ξ

= β(α − k)φ2ξ,

because (∇ξA)ξ2 = β∇ξξ2 − A∇ξξ2 and γ = 0. Taking the inner product with φ2ξ, we have

β(α − k) = 0.
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Since β �= 0 by virtue of Proposition 4.3, it follows that

α = k. (4.4)

On the other hand, putting X = ξ ∈ D and Y ∈ Tλ in (3.2), we get

0 = (∇ξA)Y − kφAY + kAφY. (4.5)

Using the equation of Codazzi (2.10), we know

(∇ξA)Y = (∇Y A)ξ + φY

= αφAY − AφAY + φY.

Thus since Y ∈ Tλ and φY ∈ Tμ, the equation (4.5) can be written as

0 = αλφY − λμφY + φY − kλφY + kμφY. (4.6)

Therefore, inserting (4.4) in (4.6), we have

0 = αλφY − λμφY + φY − αλφY + αμφY

= −λμφY + φY + αμφY.

Taking the inner product with φY , we obtain

0 = αμ − λμ + 1

=
4 tan2(r) + 2 − 2 tan2(r)

1 − tan2(r)
,

because α = −2 tan(2r), λ = cot(r) and μ = − tan(r) with some r ∈ (0, π/4), from Proposi-
tion 4.3. Thus we get tan2(r) = −1. This gives a contradiction. So this case cannot occur.

Hence summing up these assertions, we give a complete proof of our Theorem 1.3 in Intro-
duction. �

On the other hand, in a Levi–Civita connection, if we consider a new notion of D-parallel
shape operator, that is,

(∇XA)Y = 0 (∗′)
for any vector fields X ∈ D and Y ∈ TM , then its notion is different from the g-Tanaka–
Webster D-parallel and much weaker than parallel shape operator. Now using such a notion in
usual Levi–Civita connection, we assert the following (see [9]):

Remark 4.4 There does not exist any Hopf hypersurface in a complex two-plane Grassman-
nian G2(Cm+2), m ≥ 3, with D-parallel shape operator.
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